If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-35t=25
We move all terms to the left:
5t^2-35t-(25)=0
a = 5; b = -35; c = -25;
Δ = b2-4ac
Δ = -352-4·5·(-25)
Δ = 1725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1725}=\sqrt{25*69}=\sqrt{25}*\sqrt{69}=5\sqrt{69}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5\sqrt{69}}{2*5}=\frac{35-5\sqrt{69}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5\sqrt{69}}{2*5}=\frac{35+5\sqrt{69}}{10} $
| 3x+80=5x+5 | | 3x+80=5x5 | | -9z(z-9)=0 | | 46+90+2x=360 | | 46+90+2x=180 | | ((5x12)/3)+30-50= | | 2(2x-4)=7(6x+6) | | 5t^2-35t=-30 | | 6/3=10/v | | (6j+7)(-6j+5)=0 | | 21+1x=21+3x | | 5p-2/4=2 | | v(6v+1)=0 | | 2(4-x)=8(1+x) | | 7(2x-5)=6(9x+8) | | 4m+5=1 | | x+(x*0.1)=1900 | | 2m(m+8)=0 | | (3u+1)(7u-5)=0 | | 28=6x+x | | 21=3u+4u | | (4g+7)(g+8)=0 | | 5q(q+1)=0 | | 4(x+1)=-x+14 | | (z-8)(8z-7)=0 | | 0.16*x+x=1000 | | (u+6)(9u+1)=0 | | 5/7k=-10.57 | | (H-9)(h-8)=0 | | -5x+4(x+5)=x+20 | | (4w+9)(w+3)=0 | | x+3=4x-8=90 |